N.I.T. Srinagar

B.Tech. VIII Semester <u>Mid Term Examination, April 2019</u>

Subject: M	odeling and Sim	ulation	in Cher	nical E	ngineer	ing		М	ax. Marks : 30
Course No. ChBC – 84 Time: 1 hou						r 30 minutes			
Note: Attempt ALL the questions and make necessary suitable assumptions									
•••••		•••••	•••••			•••••	•••••	•••••	•••••
 Identify the terms involved in inventory rate equation of mass, energy and momentum Recall the basic concepts involved in modeling and simulation Apply conservation of mass, momentum and energy equations to engineering problems. Develop model equations for chemical engineering systems Solve the model equations and chemical engineering problems using numerical techniques 									
-	press the rate meration rate (iii	-	•		f (i)	Inlet/ou	tlet rate	e (ii)	02 [CO1]
of Org mg	5							02 [CO2, CO3]	
nap Exj nap									06 [CO2, CO5]
	x, (cm) C_A , (mol/m ³)	0 0.127	10 0.094	20 0.078	30 0.064	40 0.056	50 0.044		

Determine the molar flux of naphthalene from the plate surface under steady conditions by using least squares method. (Data: Diffusion coefficient of naphthalene (A) in air (B) at $25^{\circ}C = 0.52 \times 10^{-5} \text{ m}^2/\text{s}$)

- 2. a. List and discuss the basic steps involved in the development of steadystate macroscopic balances.
 b. Derive the momentum generation as a result of pressure force for steady 03
 - state flow in a pipe. [CO1, CO2]
 - c. The following parallel reactions take place in an isothermal constant volume 05 CSTR $A \rightarrow 2B$ $r = k_1 C_A$ $k_1 = 1.3 \text{ s}^{-1}$ [CO3]

$$3A \rightarrow C$$
 $r = k_2 C_A$ $k_2 = 0.4 s^{-1}$

Pure A is fed to the reactor at a concentration of 350 mol/m³

(i). Determine the residence time required to achieve 85% convection of species A under steady conditions

(ii). Determine the concentration of species Band C

3. a. It is required to cool a gas composed of 75 mole % N₂, 15 mole % CO₂ 05 and 10 mole % O₂ from 800 °C to 200 °C. Determine the cooling duty of [CO2, CO3] the heat exchanger if the heat capacity expressions are in the form. C_p (J/(mol* K)) = a + bT + CT² + dT³

Species	А	b X 10 ²	c X 10 ⁵	d X 10 ⁹
N ₂	28.882	-0.1570	0.8075	-2.8706
O ₂	25.460	1.5192	-0.7150	1.3108
CO ₂	21.489	5.9768	-3.4987	7.4643

b. A liquid feed to a jacketed CSTR consists of 2000 mol/m³ of A and 2400 mol/m³ of B. A second-order irreversible reaction takes place as $A+B \rightarrow 2C$. The rate of reaction is given by $r = kC_AC_B$, where the reaction rate constant at 298 K is $k = 9.15 \times 10^{-5} \text{ m}^3 / (\text{mol} * \text{min})$. The reactor operates isothermally at 65°C. (i) Calculate the residence time required to obtain 80% conversion of species A. (ii) What should be the volume of the reactor if species C are to be produced at a rate of 820 mol/min?

05 [CO1, CO3]

25/04/2019

B. Tech. Will servester mathematics if meaning
Department of chamical Engineering
Modeling of simulation in charical Engineering
ANSWER KEY-mid Term, priver 25-04-2019
1.a. (i) Inlet/outlet rate =
$$\begin{cases} (Flux)(Area) & if flux is constant \\ If flux dA & if tlux is position dependent \\ If flux dA & if tlux is position dependent \\ If R dV & if R is position dependent \\ If R dV & if R is position dependent \\ If Mass. Thus,
Total quantity of $\varphi = IIIP \rho dV$
and the rate of accumulation is given by
Accumulation rate = $\frac{d}{dt} (IIIP \rho dV)$
If φ is independent of Position, Accumulation rate = $\frac{d}{dt} (m\varphi)$
where m is the total mass within the system.
(volume of foundry)⁵⁹
The dust evolves=Rate of generation of dust = 0.3kg/h,
Dimensiong = 20mX emX+m
(volume of foundry)⁵⁹
The dust conc^m shd not exceed = Cf(or)Co = 20 mg = 20X10⁵ kg
on basis of dust, material balance of dust,
(Rate of T/P) - (Rate of $\varphi)$ + (Rate generation of dust) - (Rate generation generat$$

Π.	1947 - 1949 - 1944 1947 - 1947 - 1949		i constant i	ang ang sang sa		(a)		
			Subject of the second	1		\mathbf{O}		
1.c.	X, cm	CA, mol/m3	Yi=logCA	xiyi	Xin2			
- 193	0	0.117	-0-932	0	0			
	5	0.105	- 0.979	- 4.89	25			
	15	0.085	-1.071	-16.06	225			
	25	-1.161	-29.03	625				
1	45	0.057	-1.244	-43.54				
		0.047	-1.328	-59.76				
	ZX=125	-	ZYi=-6.719			125		
	least	square			45	4		
	54-N	C +MS28						
	EY = NC + MER $EXY = bER + MER^{2}$							
	$m = (m)(\Xi x; y;) - (\Xi x;)(\Xi y;) = (\Xi y;)(\Xi x;^2) - (\Xi x;)(\Xi x; y;)$							
	$n(zx_{i}^{2}) - (zx_{i}^{2})^{2}$ $n(zx_{i}^{2}) - (zx_{i}^{2})^{2}$							
	log CA = -0.0088x -0.94							
)	~ 0.17				
	n = 6			a	e ax			
		8800.0		de	= ae			
	n = 6 $m = -0.0088$ $b = -0.94$ $de = ae$ $de = ae$ dx							
	$\frac{By \ lo \ gorithmic \ Principles}{LnC_A = 2.303 \ logC_A} \qquad \frac{dc_A}{dre} = -0.0023 e^{-0.0023 e^{-0.002} e$							
	$lnC_A = 2.303 logC_A$ $dx/$							
	In CA -	-0.00882-	0.94	dcal		N=D		
	$\frac{\ln C_A}{2.303} = -0.0088 \times -0.94$ $\frac{d C_A}{d \times 2} = -0.0088 \times -0.94$ $\frac{d C_A}{d \times 2} = -0.0023 \times 1 = -0.0023 $							
	Inca =	2,303 (-0.0	1416	2	=0 =-0.0023X1	p^2 moll 4		
	$ \frac{\ln CA}{\ln CA} = \frac{-0.02004 \times -2.1648}{-0.02004 \times -2.1648} = \frac{dCA}{dx} = -0.23 \text{ mo} $ $ \frac{dCA}{dx} = \frac{dCA}{dx} = -0.23 \text{ mo} $ $ \frac{dCA}{dx} = -0.23 \text{ mo} $							
	$lnCA = -0.02004 \times -2.1648 \qquad \frac{dCA}{dx} = -0.23 m$ $CA = e \qquad e \qquad J_{12} = 0.23 m$							
	$C_A = e e I_{AZ} = 0.02004\chi$ $C_A = 0.115 e 0.02004\chi$ $T_{AZ} = 0$							
	CA = 0,020042							
	$C_{A} = e e J_{X=0}$ $C_{A} = 0.115 e^{-0.02004 \chi}$ $\frac{dc_{A}}{d\chi} = 0.115 \frac{de}{d\chi}$ $\frac{dc_{A}}{d\chi} = 0.115 (-0.02004)e^{-0.2004 \chi}$ $\frac{dc_{A}}{d\chi} = 0.115 (-0.02004)e^{-0.2004 \chi}$							
	dCA	0.115 (-0.0	2004)e	42				
	dre	2011-0						
				1				

(2) 2.a. The basic steps in the development of steady-state macroscopic balances are as follows: > Define your system > If Possible, draw a simple sketch -> List the assumptions -> write down the inventory rate equation for each of the basic concepts relevant to the Problem > use engineering correlations to evaluate the transfer coefficients > Solve the algebraic equations. 2.b. Momentum Generation As a Result of Pressure force FLOW Pig: Flow through a pipe Consider the steady flow of an incompressible fluid in a pipe. The rate of mechanical energy required to pump the fluid is given by $W = F_D(v) = \alpha |\Delta P|$ since the volumetric flow rate, a, is the product of average velocity. (v), with the cross-sectional area, A A AP = FD=0 According to conservation of mass min = mout (SVA) in = (SVA) out Assume Ain = Aout + B= const Vin= Vout for steady state (Rate of Rate of momentum) - (Rate of mom. out) + (Rate of mom. generation) = 0 $(mv)_{in} - (mv)_{out} + F_0 + RAL = 0$ k = Rate of momentum generation per unit volume. Not where, Note that rate of momentum transfer from the fluid to the pipe wall manifests itself as a drogforce. Rate of momentum generation per unit volume $R(AL) - F_D = 0$ is equal to the pressure gradient. $F_D = AAP$ k(AL) = AOPk = IOPI

3 3.a. Assumptions 1. Ideal gas behavior. 2. changes in kinetic and Potential energies are negligible. 3. Pressure drop in the heat exchanger is negligible. Since mint = 0 and there is no chemical reaction, nin= nout = n Qint = n (STout ĈpdT - STin ĈpdT) = n (STout ĈpdT) Tree (Tin ĈpdT) âint = fout cpdT where Qint = Qint/n, Tin= 1073K, and Tout = 473K. The molar heat capacity of the gas stream, \hat{c}_p , can be calculated by multiplying the mole fraction of each component by the respective heat capacity and adding them together $\hat{C}_{p} = \sum_{i=1}^{3} I_{i} \left(a_{i} + b_{i}T + c_{i}T^{2} + d_{i}T^{3} \right)$ = 27.431+0.931×10 T+0.009×10 T2-0.902×10973 Qint = 5 cpdT = -20522.84 J/mol

3.b. Assumptions

1. As a result of Perfect miring, concentrations of the species within the reactor are uniform, i.e., (ci)out = (ci)sys

ci)since the reactor volume is constant, the inlet and outlet volumetric flow rates are the same and equal to Q. Therefore, the inventory rate equation for conservation of species A

$$Q(CA)_{in} - QCA_{sys} - (kCA_{sys}CB_{sys})V_{sys} = 0$$

$$H = \frac{(CA)_{in} - CA}{kCACB}$$
the extent of reaction can be calculated as
$$E_{s} = \frac{(CA)_{in}}{(-\alpha A)}X_{A} = \frac{(2000)(0.8)}{1} = 1600 \text{ mol/m}^{3}$$

$$C_{A} = (C_{A})_{in} + \alpha_{A} \xi = 2000 - 1600 = 400 \text{ mol/m}^{3}$$

$$C_{B} = (C_{B})_{in} + \alpha_{B} \xi = 2400 - 1600 = 800 \text{ mol/m}^{3}$$

$$C_{C} = (C_{C})_{in} + \alpha_{C} \xi = (2)(1600) = 3200 \text{ mol/m}^{3}$$

$$T = \frac{2000 - 400}{(9.15 \times 10^{-5})(400)(800)} = 54.6 \text{ min}$$

(ii) The reactor volume, V, is given by

V=rq

The volumetric flow rate can be determined from the production rate of species C,

$$C_{C} Q = 820 \Rightarrow Q = \frac{820}{3200} = 0.256 \text{ m}/\text{min}$$

Hence, the reactor volume is

_